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Ketamine is the first exemplar of a rapid-acting antidepressant with efficacy for treatment-resistant symp-
toms of mood disorders. Its discovery emerged from a reconceptualization of the biology of depression.
Neurobiological insights into ketamine efficacy shed new light on themechanisms underlying antidepressant
efficacy.
The rapid, profound, and sustainable anti-

depressant effects of ketamine seem

poised to transform the treatment of

depression, while mechanisms through

which it may work are overturning the

receivedwisdom regarding the underlying

neurobiology.

The Problem: An Overly Narrow
Focus on Monoamine Signaling
Depression is among the most disabling

medical conditions. Yet, in America,

12.5% of individuals over the age of 12

recently filled an antidepressant prescrip-

tion (Pratt et al., 2017). Thus, shortcom-

ings in the effectiveness of antidepressant

treatments probably contribute to the

enormous public health burden of depres-

sion. Despite progress, too few patients

respond to antidepressants, improve-

ment is too slow among eventual re-

sponders, and too many patients relapse

after having achieved response. Further,

subgroups of depressed patients, partic-

ularly thosewith bipolar disorder, respond

poorly to traditional antidepressants,

and they are treated predominately with

alternative treatments (Duman et al.,

2016; Krystal et al., 2013).

The premature conclusion that all anti-

depressants worked by ameliorating def-

icits in monoamine signaling contributed

to the failure to identify fundamentally

new treatment mechanisms since the

discovery of antidepressants in the late

1950s. Limitations of this ‘‘monoamine

hypothesis of depression’’ emerged in

the 1990s. While depleting the body of
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monoamines transiently reversed the

therapeutic effects of antidepressants,

monoamine depletion did not reliably

induce depression in healthy people,

nor did it consistently worsen depres-

sion in unmedicated depressed patients.

Further, studies focused increasingly on

the postsynaptic response to antidepres-

sants, involving signaling mechanisms

that were downstream of monoamine

receptors and not specific to monomine

signal transduction. These mechanisms

included alterations in neurotrophin

signaling, transcriptional alterations, and

epigenetic changes. Thus, there had

long been clues that critical elements of

the neurobiology of depression and its

treatment were extrinsic to monoamine

neurons (Duman et al., 2016).

The Opportunity: A Broader
Circuitry Perspective
We wondered, how could we target the

non-monoaminergic mechanisms more

directly? In a simple perspective shift,

illustrated in Figure 1A, we and others

reasoned that the pathology of depres-

sionmight ‘‘reside’’ in the intrinsic circuitry

of the cortex and limbic system (Duman

et al., 2016; Krystal et al., 2013), where

neurons predominately released gluta-

mate and GABA rather than monoamines.

We (J.H.K. and D.S.C.) had studied gluta-

mate pathophysiology related to schizo-

phrenia and alcohol use disorders by

evaluating the response to the N-methyl-

D-aspartate (NMDA) glutamate receptor

antagonist ketamine. In light of evidence
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of cortico-limbic pathology in depression,

we (J.H.K. and D.S.C.) decided to explore

glutamate synaptic alterations using the

response to ketamine as a probe. We

were aware of preclinical studies suggest-

ing that NMDA receptor antagonists had

antidepressant effects, particularly those

of Dr. Phil Skolnick and his colleagues.

However, we did not expect much

benefit from single doses of ketamine in

depressed patients. Our study was not

motivated by clinical reports of antide-

pressant effects of ketamine in the anes-

thesia context. The dose and manner of

ketamine infusion in our depression study

(0.5 mg/kg ketamine infused intrave-

nously over 40 min) was derived from

our psychosis studies. In those studies,

we selected a dose and rate of infusion

that produced transient schizophrenia-

like symptoms and cognitive impairments

without producing delirium or an anesthe-

tized state.

To the amazement of our patients and

ourselves, we found that ketamine pro-

duced rapid, profound, and surprisingly

durable antidepressant effects that were

temporally dissociated from the brief

acute behavioral effects of the drug; i.e.,

the initial euphoria produced by ketamine

was not a part of its antidepressant effect

(Berman et al., 2000; Figure 1B). These

antidepressant effects had not been

observed in healthy subjects. Our initial

findings were widely replicated (Krystal

et al., 2013; Zarate et al., 2006). These

replications found that a single dose

of ketamine produced antidepressant
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Figure 1. The Path to the Identification of the Antidepressant Effects of Ketamine and Its Therapeutic Mechanisms of Action
(A) This figure illustrates the perspective shift that set the stage for testing ketamine effects in depressed patients. The left side of the figure presents the his-
torically dominant theory, i.e., that deficits in serotonin (5-HT) and norepinephrine (NE) signaling contribute to the biology of depression and that pharmacotherapy
aims to reverse these deficits. 5-HT and NE neurons are based in the midbrain and pons, respectively, and modulate the activity of higher brain centers. The right
side of the figure highlights the shift in perspective to cortical and limbic mechanisms. The neurons in the higher brain centers release glutamate and GABA
predominately. If one viewed depression as a disorder of cortico-limbic function, then glutamatergic and GABAergic signaling would be implicated. This
perspective shift led us to test the effects of the NMDA glutamate receptor antagonist as a probe of alterations in glutamate signaling associated with depression.
(B) This figure highlights the temporal dissociation of the acute behavioral effects of ketamine, which are observed in healthy humans and patient populations, and
the rapidly emerging antidepressant effects of ketamine, which occur only in individuals with psychiatric symptoms (n = 7, modified from Berman et al., 2000). It
presents mean changes from baseline in the 25-item Hamilton Depression Rating Scale scores (HDRS), the mean Visual Analog Scale ‘‘high’’ scores (VAS-high,
0–100 mm), andmean positive symptom scores of the Brief Psychiatric Rating Scale (BPRS-positive) after ketamine (0.5 mg/kg over 40min) and saline infusions.
The emergence of antidepressant effects after the abatement of the transient pharmacologic effects of ketamine is consistent with the hypothesis that these
antidepressant effects reflect a reaction to ketamine exposure rather than a property of ketamine intoxication.
(C) This cartoon illustrates emerging mechanistic hypotheses related to the antidepressant effects of ketamine. Some effects may emerge directly as a down-
stream consequence of NMDA glutamate receptor antagonism. These effects are illustrated by blockade of postsynaptic, presumably GluN2B-containing NMDA
receptors. When overstimulated, these receptors activate eukaryotic elongation factor-2 (eEF2) and depress BDNF levels. Blockade of these NMDA receptors
raises BDNF levels and shuttles AMPA glutamate receptors to the synapse, enhancing synaptic efficacy. Ketamine also may generate its antidepressant effects
indirectly by blocking NMDA receptors on GABA interneurons. In this way, ketamine reduces inhibition of glutamate release and, in turn, results in enhanced
stimulation of AMPA glutamate receptors. AMPA receptor activation activates a signaling cascade that raises BDNF levels. Local release of BDNF is thought to
stimulate TrkB receptors, engaging relevant signaling cascadesand resulting in theactivation of themolecular target of rapamycin complex 1 (mTORC1). This step,
in turn, activates local protein synthesis necessary for increasing dendritic spine formation and restoring synaptic connectivity. In this figure, AMPA, BDNF, and
mTORC1 are highlighted because blockade of these steps in the pathway prevents the emergence of the antidepressant effects of ketamine (Duman et al., 2016;
Krystal et al., 2013). Please note the convergence of the direct and indirect effects of ketamine on some common mechanisms may constitute elements of a
common pathway for antidepressant efficacy, i.e., enhancement of synaptic efficacy and connectivity in key circuits involved in the regulation of mood.
(D) These figures present data suggesting that the ability of ketamine to increase cortical structural connectivity in animals and restore cortical functional
connectivity in depressed patients is related to its clinical efficacy. (Da) This figure illustrates the depletion of dendritic spines on prefrontal cortical pyramidal
(glutamate-releasing) neurons in animals exposed to repeated stresses (Li et al., 2010). (Db) This figure presents functional MRI data collected in symptomatic
depression patients prior to (left figure) and 24 h after (right figure) ketamine. Areas in blue show reduced functional connectivity (degree of correlation of activity
with other brain regions). Following ketamine administration, the reductions in functional connectivity (areas in blue) are ameliorated, associated with alleviation of
depression symptoms (Abdallah et al., 2017).

Neuron

NeuroView

Neuron 101, March 6, 2019 775



Neuron

NeuroView
effects that began within hours, peaked

within 24 to 72 h, and then dissipated typi-

cally within 2 weeks if ketamine was not

repeated. Also, the subsequent studies

showed that ketamine was effective in an-

tidepressant non-responders, including

patients with bipolar disorder. Further,

the antidepressant effects of ketamine

were meaningful clinically, with one-third

of patients with treatment-resistant symp-

toms achieving remission and �50%–

75% of patients demonstrating clinical

response from a single dose, with

higher rates of response and remission

with repeated administrations (Wilkinson

et al., 2017). Lastly, ketamine reduced all

symptoms of depression, notably suicidal

ideation (Krystal et al., 2013).

Many questions remain regarding the

optimal prescription of ketamine. For

example, there is great interest in finding

a sub-dissociative therapeutic dose. This

aim is challenging because the dose-

response relationship for subanesthetic

ketamine is very steep, with 0.2 mg/kg

being subtherapeutic and 0.5mg/kg being

dissociative and effective (Fava et al.,

2017; Su et al., 2017), although one study

reported positive effects with 0.1 mg/kg

(Fava et al., 2017). This effort is further

complicated by variability in plasma levels

at each dose and differential sensitivity to

ketamine across patients. Some patients

show improvement with minimal dissocia-

tion. In other patients, increasing dissocia-

tive symptoms by administering a higher

ketamine dose (1.0 mg/kg; �70 mg) does

not enhance the rapid therapeutic

response (Fava et al., 2017). Thus, disso-

ciative symptomsmay not mediate clinical

benefits, but they may signal adequate

target engagement by ketamine. The

optimal frequency of ketamine administra-

tion is also evolving. Treatment is initiated

typically twice per week. The frequency

of infusions is tapered gradually, with as

many as 40% of patients maintained with

monthly or less frequent infusions in our

clinic. However, there is relatively little

comparative effectiveness data to guide

the tapering of administration frequency.

In practice, the timing of infusions is adapt-

ed to the needs of particular patients.

Mechanism of Action: Ketamine as
‘‘The Tip of the Iceberg’’
The identification of the antidepressant

effects of ketamine stimulated basic
776 Neuron 101, March 6, 2019
and translational neuroscience research.

Paradoxically, ketamine increases neuro-

plasticity despite blocking NMDA recep-

tors, a critical mediator of plasticity (Du-

man et al., 2016; Krystal et al., 2013). By

blocking GluN2B-containing NMDA re-

ceptors, ketamine may prevent the phos-

phorylation of eEF2, raise BDNF levels,

and promote the shuttling of AMPA re-

ceptors to the synapse, enhancing synap-

tic connectivity and plasticity (Figure 1C).

To date, there is at least one study sug-

gesting that a GluN2B-preferring NMDA

antagonist showed evidence of antide-

pressant efficacy at a dose that also pro-

duced dissociative symptoms (Krystal

et al., 2013). It remains unclear whether

NMDA receptor antagonist properties,

including subtype selectivity, competitive

versus uncompetitive antagonism, or high

versus low trapping within the cation

channel, will be strategies to meaningfully

improve efficacy or safety.

The ability of ketamine to disinhibit

glutamate release also may contribute

to its antidepressant efficacy (Figure 1C)

(Duman et al., 2016; Krystal et al., 2013).

In humans, ketamine stimulates the

cortical rate of conversion of 13C-gluta-

mate to 13-C glutamine, a measure

stoichiometrically related to glutamate

release (Abdallah et al., 2018). In animal

studies, by transiently enhancing gluta-

mate release and stimulating AMPA

glutamate receptors, ketamine promotes

BDNF release, enhances TrkB receptor

stimulation, activates mTORC1, and

stimulates local protein synthesis. Most

remarkably, this cascade of processes

results in the rapid proliferation of den-

dritic spines that share a temporal profile

with antidepressant effects. As illustrated

in Figure 1D, these effects in animals

are paralleled by restoration of func-

tional connectivity in an fMRI study of

depressed patients (Abdallah et al., 2018).

In the time window in which ketamine

enhances synaptic connectivity, it also

enhances synaptic plasticity. In animals,

fear extinction is enhanced 24 h after

ketamine administration (Duman et al.,

2016). In depressed patients, there is pre-

liminary evidence that cognitive behav-

ioral therapy may extend the duration of

ketamine efficacy. Thus, there may be

specific ways to combine ketamine, psy-

chotherapies, and other interventions

that might heighten their clinical impact.
Wedonot yet haveclosure on themech-

anisms through which ketamine produces

its antidepressant effects. For example,

ketaminehasanti-inflammatoryandepige-

netic effects, and it alters activity within

circuits implicated in reward and motiva-

tion. Ketamine effects at sites other than

NMDA receptors also may contribute to

its efficacy. The antidepressant effects of

both isomers of ketamine are being stud-

ied, as well as the ketamine metabolites

(S)-norketamine and (2R,6R)-hydroxynor-

ketamine (HNK). If (S)-ketamine, (R)-keta-

mine, and HNK differ in their mechanisms

of action, it is possible that they have com-

plementary or even additive antidepres-

sant effects (Duman et al., 2016).

Ketamine may serve as a prototype for

an entirely new class of antidepressant

medications. This view is based on the

hypothesis that selectively targeting ele-

ments of ketamine’s effects could pre-

serve efficacy while producing greater

tolerability. For example, other putative

antidepressants that increase glutamate

release might include serotonergic

hallucinogens (LSD, psilocybin), musca-

rinic receptor antagonists (scopolamine),

mGluR2 antagonists, and GABAA sub-

type-selective negative allosteric modula-

tors or inverse agonists. AMPAkines

might have antidepressant effects via

AMPA receptor facilitation. Similarly, one

could imagine developing drugs to raise

BDNF levels, enhance TrkB receptor

signaling, or promote mTORC1 activation

(Duman et al., 2016; Krystal et al., 2013).

Changing Expectations
The surprisingly rapid and profound effi-

cacy of ketamine revealed that our expec-

tations for antidepressant treatment were

constrained by limitations in our under-

standing of what might be possible.

Further, the fascinating biology of the an-

tidepressant effects of ketamine showed

how little we understood the most inten-

sively studied class of medications in

psychiatry.

Where Does Ketamine Belong in the

Treatment Algorithm for

depression?

In light of growing long-term safety

and efficacy data, particularly for esket-

amine, ketamine can be viewed as a

long-term treatment. It was reserved

initially for patients who failed electrocon-

vulsive therapy. However, increasingly, it
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is prescribed to patients who have

failed two adequate antidepressant treat-

ments. The distinctive rapidity of onset

and efficacy of ketamine and esketamine

for the treatment of suicidal ideation

raise the possibility that they could be

used in urgent care contexts, including

in emergency rooms or other medical

contexts, to rapidly manage suicide risk

and to mitigate or shorten psychiatric

hospitalization.

What Does Long-Term Ketamine

Treatment Look Like?

Ketamine treatment must include protec-

tions against the abuse liability of keta-

mine and provide for the management

of its acute dissociative effects. Both

of these risks may be managed by

limiting drug administration to clinical set-

tings. However, alternative treatment ap-

proaches, such as home administration

by a visiting nurse, might be explored to

see whether they could increase access

and reduce costs of treatment without

substantially increasing risks.

Could Ketamine Change What It

Means to Have Depression?

Depression is highly stigmatized. When

people disclose their depression, they

may have difficulty obtaining jobs, getting

promotions, and maintaining relation-

ships. When disabled by depression,

they may be unable to perform at work

or to care for their families. They may

lose hope of recovery and attempt sui-

cide, particularly if treatments have been

ineffective in producing remission or pre-

venting relapse. Ketamine may become

a transformative treatment. Transforma-

tive treatments have a powerful impact

on stigma, as exemplified by the emer-

gence of anti-retroviral treatments for

AIDS. Thus, ketamine may be not only a

source of hope for patients and their

families but also a powerful weapon in

the fight against stigma and for parity

in the support for depression prevention,

treatment, and research.

Was the Discovery of Ketamine’s

Antidepressant Serendipitous?

Of course. However, its discovery

emerged from the testing of a novel

mechanistic hypothesis related to the

pathophysiology of depression. Without

that hypothesis and a pharmacologic

tool to test that hypothesis, the fortuitous

clinical observation would not have been
made. Once the clinical observation

occurred, advances in basic neurosci-

ence led to more specific mechanistic

hypotheses. These hypotheses are now

driving a new generation of human

translational neuroscience studies. Thus,

the ‘‘ketamine story’’ is a step toward

an era when psychiatric neuroscience

more routinely identifies novel treatments

based on a progressively deeper under-

standing of the brain and the pathophysi-

ology of psychiatric disorders. We must

be cautious about what we claim to un-

derstand about the brain, the biology of

depression, and treatment. Nonetheless,

this increasingly mature scientific founda-

tion for psychiatry bodes well for the

future of the overall enterprise aimed at

reducing the burden of mental illness.
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